Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559013

RESUMO

Metachromatic leukodystrophy (MLD) is a fatal lysosomal storage disease (LSD) characterized by the deficient enzymatic activity of arylsulfatase A (ARSA). Combined autologous hematopoietic stem cell transplant (HSCT) with lentiviral (LV) based gene therapy has great potential to treat MLD. However, if enzyme production is inadequate, this could result in continued loss of motor function, implying a high vector copy number (VCN) requirement for optimal enzymatic output. This may place children at increased risk for genomic toxicity due to higher VCN. We increased the expression of ARSA cDNA at single integration by generating novel LVs, optimizing ARSA expression, and enhancing safety. In addition, our vectors achieved optimal transduction in mouse and human HSC with minimal multiplicity of infection (MOI). Our top-performing vector (EA1) showed at least 4X more ARSA activity than the currently EU-approved vector and a superior ability to secrete vesicle-associated ARSA, a critical modality to transfer functional enzymes from microglia to oligodendrocytes. Three-month-old Arsa -KO MLD mice transplanted with Arsa -KO BM cells transduced with 0.6 VCN of EA1 demonstrated behavior and CNS histology matching WT mice. Our novel vector boosts efficacy while improving safety as a robust approach for treating early symptomatic MLD patients.

2.
Cytotherapy ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38613540

RESUMO

Metachromatic leukodystrophy (MLD) is a fatal, progressive neurodegenerative disorder caused by biallelic pathogenic mutations in the ARSA (Arylsulfatase A) gene. With the advent of presymptomatic diagnosis and the availability of therapies with a narrow window for intervention, it is critical to define a standardized approach to diagnosis, presymptomatic monitoring, and clinical care. To meet the needs of the MLD community, a panel of MLD experts was established to develop disease-specific guidelines based on healthcare resources in the United States. This group developed a consensus opinion for best-practice recommendations, as follows: (i) Diagnosis should include both genetic and biochemical testing; (ii) Early diagnosis and treatment for MLD is associated with improved clinical outcomes; (iii) The panel supported the development of newborn screening to accelerate the time to diagnosis and treatment; (iv) Clinical management of MLD should include specialists familiar with the disease who are able to follow patients longitudinally; (v) In early onset MLD, including late infantile and early juvenile subtypes, ex vivo gene therapy should be considered for presymptomatic patients where available; (vi) In late-onset MLD, including late juvenile and adult subtypes, hematopoietic cell transplant (HCT) should be considered for patients with no or minimal disease involvement. This document summarizes current guidance on the presymptomatic monitoring of children affected by MLD as well as the clinical management of symptomatic patients. Future data-driven evidence and evolution of these recommendations will be important to stratify clinical treatment options and improve clinical care.

4.
J Child Neurol ; : 8830738241241786, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532733

RESUMO

Aicardi-Goutières syndrome is a genetic inflammatory disorder resulting in dispersed neurologic dysfunction. Despite a recognition of overall motor impairment, fine and visual motor skills are undercharacterized. We hypothesize that there is a spectrum of fine and visual motor skills in the Aicardi-Goutières syndrome population as captured by a standard outcome measure, the Peabody Developmental Motor Scales (PDMS-2), which will be proportional to overall disease severity.In a cohort of 74 subjects, the Peabody Developmental Motor Scales-2 grasping and visual-motor integration subtests were administered concurrently with the Aicardi-Goutières syndrome Severity Scale (severe [range 0-3], moderate [range 4-8], and attenuated [range 9-11]). The cohort was also compared by genotype and performance as defined by raw scores. The distribution of Peabody Developmental Motor Scales-2 scores within a genotype was assessed by interquartile ranges (IQRs).Peabody Developmental Motor Scales-2 grasping and visual-motor integration performance was the least variable in the TREX1-cohort (IQR: 10.00-12.00) versus the SAMHD1 and IFIH1 cohorts (IQR: 51.00-132.00 and 48.50-134.00, respectively). Neurologic severity highly correlated with both fine and visual motor skills (Spearman correlation: r = 0.87, 0.91, respectively). A floor effect (lowest 10% of possible scores) was observed within the severe cohort (n = 32/35), whereas a ceiling effect (top 10%) was observed in the attenuated cohort (n = 13/17).This study characterized the spectrum of fine and visual motor function in the Aicardi-Goutières syndrome population, which correlated with overall neurologic dysfunction. The Peabody Developmental Motor Scales-2 grasping and visual-motor integration showed promise as potential assessment tools in moderate and attenuated Aicardi-Goutières syndrome cohorts. A better understanding of fine and visual motor function in this population will benefit clinical care and clinical trial design.

5.
Mol Genet Metab ; 142(1): 108453, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522179

RESUMO

Growing interest in therapeutic development for rare diseases necessitate a systematic approach to the collection and curation of natural history data that can be applied consistently across this group of heterogenous rare diseases. In this study, we discuss the challenges facing natural history studies for leukodystrophies and detail a novel standardized approach to creating a longitudinal natural history study using existing medical records. Prospective studies are uniquely challenging for rare diseases. Delays in diagnosis and overall rarity limit the timely collection of natural history data. When feasible, prospective studies are often cross-sectional rather than longitudinal and are unlikely to capture pre- or early- symptomatic disease trajectories, limiting their utility in characterizing the full natural history of the disease. Therapeutic development in leukodystrophies is subject to these same obstacles. The Global Leukodystrophy Initiative Clinical Trials Network (GLIA-CTN) comprises of a network of research institutions across the United States, supported by a multi-center biorepository protocol, to map the longitudinal clinical course of disease across leukodystrophies. As part of GLIA-CTN, we developed Standard Operating Procedures (SOPs) that delineated all study processes related to staff training, source documentation, and data sharing. Additionally, the SOP detailed the standardized approach to data extraction including diagnosis, clinical presentation, and medical events, such as age at gastrostomy tube placement. The key variables for extraction were selected through face validity, and common electronic case report forms (eCRF) across leukodystrophies were created to collect analyzable data. To enhance the depth of the data, clinical notes are extracted into "original" and "imputed" encounters, with imputed encounter referring to a historic event (e.g., loss of ambulation 3 months prior). Retrospective Functional Assessments were assigned by child neurologists, using a blinded dual-rater approach and score discrepancies were adjudicated by a third rater. Upon completion of extraction, data source verification is performed. Data missingness was evaluated using statistics. The proposed methodology will enable us to leverage existing medical records to address the persistent gap in natural history data within this unique disease group, allow for assessment of clinical trajectory both pre- and post-formal diagnosis, and promote recruitment of larger cohorts.


Assuntos
Doenças Raras , Humanos , Doenças Raras/diagnóstico , Doenças Raras/terapia , Doenças Raras/epidemiologia , Estudos Longitudinais , Estados Unidos , Estudos Prospectivos
6.
Eur J Paediatr Neurol ; 49: 141-154, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38554683

RESUMO

INTRODUCTION: Metachromatic leukodystrophy (MLD) is a rare autosomal recessive lysosomal storage disorder resulting from arylsulfatase A enzyme deficiency, leading to toxic sulfatide accumulation. As a result affected individuals exhibit progressive neurodegeneration. Treatments such as hematopoietic stem cell transplantation (HSCT) and gene therapy are effective when administered pre-symptomatically. Newborn screening (NBS) for MLD has recently been shown to be technically feasible and is indicated because of available treatment options. However, there is a lack of guidance on how to monitor and manage identified cases. This study aims to establish consensus among international experts in MLD and patient advocates on clinical management for NBS-identified MLD cases. METHODS: A real-time Delphi procedure using eDELPHI software with 22 experts in MLD was performed. Questions, based on a literature review and workshops, were answered during a seven-week period. Three levels of consensus were defined: A) 100%, B) 75-99%, and C) 50-74% or >75% but >25% neutral votes. Recommendations were categorized by agreement level, from strongly recommended to suggested. Patient advocates participated in discussions and were involved in the final consensus. RESULTS: The study presents 57 statements guiding clinical management of NBS-identified MLD patients. Key recommendations include timely communication by MLD experts with identified families, treating early-onset MLD with gene therapy and late-onset MLD with HSCT, as well as pre-treatment monitoring schemes. Specific knowledge gaps were identified, urging prioritized research for future evidence-based guidelines. DISCUSSION: Consensus-based recommendations for NBS in MLD will enhance harmonized management and facilitate integration in national screening programs. Structured data collection and monitoring of screening programs are crucial for evidence generation and future guideline development. Involving patient representatives in the development of recommendations seems essential for NBS programs.


Assuntos
Leucodistrofia Metacromática , Triagem Neonatal , Humanos , Leucodistrofia Metacromática/terapia , Leucodistrofia Metacromática/diagnóstico , Recém-Nascido , Triagem Neonatal/métodos , Triagem Neonatal/normas , Técnica Delphi , Europa (Continente) , Consenso
7.
Mol Genet Metab ; 142(1): 108346, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38368708

RESUMO

OBJECTIVE: Aicardi Goutières Syndrome (AGS) is a genetic interferonopathy associated with multisystemic heterogeneous disease and neurologic dysfunction. AGS includes a broad phenotypic spectrum which is only partially explained by genotype. To better characterize this variability, we will perform a systematic analysis of phenotypic variability in familial cases of AGS. METHODS: Among thirteen families, twenty-six siblings diagnosed with AGS were identified from the Myelin Disorders and Biorepository Project (MDBP) at the Children's Hospital of Philadelphia. Data were collected on the age of onset, genotype, neurologic impairment, and systemic complications. Neurologic impairment was assessed by a disease-specific scale (AGS Severity Scale) at the last available clinical encounter (range: 0-11 representing severe - attenuated phenotypes). The concordance of clinical severity within sibling pairs was categorized based on the difference in AGS Scale (discordant defined as >2-unit difference). The severity classifications were compared between sibling sets and by genotype. RESULTS: Five genotypes were represented: TREX1 (n = 4 subjects), RNASEH2B (n = 8), SAMHD1 (n = 8) ADAR1 (n = 4), and IFIH1 (n = 2). The older sibling was diagnosed later relative to the younger affected sibling (median age 7.32 years [IQR = 14.1] compared to 1.54 years [IQR = 10.3]). Common presenting neurologic symptoms were tone abnormalities (n = 10/26) and gross motor dysfunction (n = 9/26). Common early systemic complications included dysphagia and chilblains. The overall cohort median AGS severity score at the last encounter was 8, while subjects presenting with symptoms before one year had a median score of 5. The TREX1 cohort presented at the youngest age and with the most severe phenotype on average. AGS scores were discordant for 5 of 13 sibling pairs, most commonly in the SAMHD1 pairs. Microcephaly, feeding tube placement, seizures and earlier onset sibling were associated with lower AGS scores (respectively, Wilcoxon rank sum: p = 0.0001, p < 0.0001, p = 0.0426, and Wilcoxon signed rank: p = 0.0239). CONCLUSIONS: In this systematic analysis of phenotypic variability in familial cases, we found discordance between siblings affected by AGS. Our results underscore the heterogeneity of AGS and suggest factors beyond AGS genotype may affect phenotype. Understanding the critical variables associated with disease onset and severity can guide future therapeutic interventions and clinical monitoring. This report reinforces the need for further studies to uncover potential factors to better understand this phenotypic variability, and consequently identify potential targets for interventions in attempt to change the natural history of the disease.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Exodesoxirribonucleases , Estudos de Associação Genética , Genótipo , Malformações do Sistema Nervoso , Fenótipo , Irmãos , Humanos , Doenças Autoimunes do Sistema Nervoso/genética , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/complicações , Feminino , Masculino , Pré-Escolar , Criança , Lactente , Exodesoxirribonucleases/genética , Fosfoproteínas/genética , Ribonuclease H/genética , Proteína 1 com Domínio SAM e Domínio HD/genética , Adolescente , Proteínas Monoméricas de Ligação ao GTP/genética , Helicase IFIH1 Induzida por Interferon/genética , Mutação , Proteínas de Ligação a RNA/genética , Idade de Início , Índice de Gravidade de Doença
8.
Orphanet J Rare Dis ; 19(1): 46, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326898

RESUMO

BACKGROUND: For decades, early allogeneic stem cell transplantation (HSCT) has been used to slow neurological decline in metachromatic leukodystrophy (MLD). There is lack of consensus regarding who may benefit, and guidelines are lacking. Clinical practice relies on limited literature and expert opinions. The European Reference Network for Rare Neurological Diseases (ERN-RND) and the MLD initiative facilitate expert panels for treatment advice, but some countries are underrepresented. This study explores organizational and clinical HSCT practices for MLD in Europe and neighboring countries to enhance optimization and harmonization of cross-border MLD care. METHODS: A web-based EUSurvey was distributed through the ERN-RND and the European Society for Blood and Marrow Transplantation Inborn Errors Working Party. Personal invitations were sent to 89 physicians (43 countries) with neurological/metabolic/hematological expertise. The results were analyzed and visualized using Microsoft Excel and IBM SPSS statistics. RESULTS: Of the 30 countries represented by 42 respondents, 23 countries offer HSCT for MLD. The treatment is usually available in 1-3 centers per country (18/23, 78%). Most countries have no or very few MLD patients transplanted during the past 1-5 years. The eligibility criteria regarding MLD subtype, motor function, IQ, and MRI largely differ across countries. CONCLUSION: HSCT for MLD is available in most European countries, but uncertainties exist in Eastern and South-Eastern Europe. Applied eligibility criteria and management vary and may not align with the latest scientific insights, indicating physicians' struggle in providing evidence-based care. Interaction between local physicians and international experts is crucial for adequate treatment decision-making and cross-border care in the rapidly changing MLD field.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucodistrofia Metacromática , Humanos , Leucodistrofia Metacromática/terapia , Transplante de Células-Tronco Hematopoéticas/métodos , Europa (Continente) , Imageamento por Ressonância Magnética , Consenso
9.
J Inherit Metab Dis ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421058

RESUMO

The balance between a protective and a destructive immune response can be precarious, as exemplified by inborn errors in nucleotide metabolism. This class of inherited disorders, which mimics infection, can result in systemic injury and severe neurologic outcomes. The most common of these disorders is Aicardi Goutières syndrome (AGS). AGS results in a phenotype similar to "TORCH" infections (Toxoplasma gondii, Other [Zika virus (ZIKV), human immunodeficiency virus (HIV)], Rubella virus, human Cytomegalovirus [HCMV], and Herpesviruses), but with sustained inflammation and ongoing potential for complications. AGS was first described in the early 1980s as familial clusters of "TORCH" infections, with severe neurology impairment, microcephaly, and basal ganglia calcifications (Aicardi & Goutières, Ann Neurol, 1984;15:49-54) and was associated with chronic cerebrospinal fluid (CSF) lymphocytosis and elevated type I interferon levels (Goutières et al., Ann Neurol, 1998;44:900-907). Since its first description, the clinical spectrum of AGS has dramatically expanded from the initial cohorts of children with severe impairment to including individuals with average intelligence and mild spastic paraparesis. This broad spectrum of potential clinical manifestations can result in a delayed diagnosis, which families cite as a major stressor. Additionally, a timely diagnosis is increasingly critical with emerging therapies targeting the interferon signaling pathway. Despite the many gains in understanding about AGS, there are still many gaps in our understanding of the cell-type drivers of pathology and characterization of modifying variables that influence clinical outcomes and achievement of timely diagnosis.

10.
J Inherit Metab Dis ; 47(2): 374-386, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37870986

RESUMO

Sulfatases catalyze essential cellular reactions, including degradation of glycosaminoglycans (GAGs). All sulfatases are post-translationally activated by the formylglycine generating enzyme (FGE) which is deficient in multiple sulfatase deficiency (MSD), a neurodegenerative lysosomal storage disease. Historically, patients were presumed to be deficient of all sulfatase activities; however, a more nuanced relationship is emerging. Each sulfatase may differ in their degree of post-translational modification by FGE, which may influence the phenotypic spectrum of MSD. Here, we evaluate if residual sulfatase activity and accumulating GAG patterns distinguish cases from controls and stratify clinical severity groups in MSD. We quantify sulfatase activities and GAG accumulation using three complementary methods in MSD participants. Sulfatases differed greatly in their tolerance of reduction in FGE-mediated activation. Enzymes that degrade heparan sulfate (HS) demonstrated lower residual activities than those that act on other GAGs. Similarly, HS-derived urinary GAG subspecies preferentially accumulated, distinguished cases from controls, and correlated with disease severity. Accumulation patterns of specific sulfatase substrates in MSD provide fundamental insights into sulfatase regulation and will serve as much-needed biomakers for upcoming clinical trials. This work highlights that biomarker investigation of an ultra-rare disease can simultaneously inform our understanding of fundamental biology and advance clinical trial readiness efforts.


Assuntos
Doenças por Armazenamento dos Lisossomos , Doença da Deficiência de Múltiplas Sulfatases , Humanos , Doença da Deficiência de Múltiplas Sulfatases/genética , Sulfatases , Glicosaminoglicanos , Heparitina Sulfato , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Gravidade do Paciente
11.
Mol Psychiatry ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129659

RESUMO

Three Prime Repair Exonuclease 1 (TREX1) gene mutations have been associated with Aicardi-Goutières Syndrome (AGS) - a rare, severe pediatric autoimmune disorder that primarily affects the brain and has a poorly understood etiology. Microglia are brain-resident macrophages indispensable for brain development and implicated in multiple neuroinflammatory diseases. However, the role of TREX1 - a DNase that cleaves cytosolic nucleic acids, preventing viral- and autoimmune-related inflammatory responses - in microglia biology remains to be elucidated. Here, we leverage a model of human embryonic stem cell (hESC)-derived engineered microglia-like cells, bulk, and single-cell transcriptomics, optical and transmission electron microscopy, and three-month-old assembloids composed of microglia and oligodendrocyte-containing organoids to interrogate TREX1 functions in human microglia. Our analyses suggest that TREX1 influences cholesterol metabolism, leading to an active microglial morphology with increased phagocytosis in the absence of TREX1. Notably, regulating cholesterol metabolism with an HMG-CoA reductase inhibitor, FDA-approved atorvastatin, rescues these microglial phenotypes. Functionally, TREX1 in microglia is necessary for the transition from gliogenic intermediate progenitors known as pre-oligodendrocyte precursor cells (pre-OPCs) to precursors of the oligodendrocyte lineage known as OPCs, impairing oligodendrogenesis in favor of astrogliogenesis in human assembloids. Together, these results suggest routes for therapeutic intervention in pathologies such as AGS based on microglia-specific molecular and cellular mechanisms.

12.
J Child Neurol ; 38(8-9): 518-527, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37499181

RESUMO

Background: Aicardi-Goutières syndrome (AGS) is a rare genetic disorder characterized by a spectrum of motor abilities. While the Aicardi-Goutières syndrome severity score favors severely impacted individuals, there is an unmet need to define tools measuring function across the Aicardi-Goutières syndrome spectrum as potential outcome assessments for future clinical trials. Methods: Gross Motor Function Measure-88 (GMFM-88) and AGS Severity Scale were administered in individuals affected by Aicardi-Goutières syndrome (n = 71). We characterized the performance variability by genotype. Derived versions of the GMFM-88, including the GMFM-66, GMFM-66 item set (GMFM-66IS), and GMFM-66 Basal&Ceiling (GMFM-66BC) were calculated. The Aicardi-Goutières syndrome cohort was divided into severe (AGS Severity Scale score <4) or attenuated (≥4). Performance on the AGS Severity Scale highly correlated with total GMFM-88 scores (Spearman Correlation: R = 0.91). To assess variability of the GMFM-88 within genotypic subcohorts, interquartile ranges (IQRs) were compared. Results: GMFM-88 performance in the TREX1 cohort had least variability while the SAMHD1 cohort had the largest IQR (4.23 vs 81.8). Floor effect was prominent, with most evaluations scoring below 20% (n = 46, 64.79%), particularly in TREX1- and RNASEH2-cohorts. Performance by the GMFM-66, GMFM-66IS, and GMFM-66BC highly correlated with the full GMFM-88. The Aicardi-Goutières syndrome population represents a broad range of gross motor skills. Conclusions: This work identified the GMFM-88 as a potential clinical outcome assessment in subsets of the Aicardi-Goutières syndrome population but underscores the need for additional validation of outcome measures reflective of the diverse gross motor function observed in this population, including low motor function. When time is limited by resources or patient endurance, shorter versions of the GMFM-88 may be a reasonable alternative.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Malformações do Sistema Nervoso , Humanos , Malformações do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/genética , Genótipo , Mutação
13.
J Child Neurol ; 38(8-9): 498-504, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37461315

RESUMO

TUBB4A pathogenic variants are associated with a spectrum of neurologic impairments including movement disorders and leukodystrophy. With the development of targeted therapies, there is an urgent unmet need for validated tools to measure mobility impairment. Our aim is to explore gross motor function in a pediatric-onset TUBB4A-related leukodystrophy cohort with existing gross motor outcome tools. Gross Motor Function Measure-88 (GMFM-88), Gross Motor Function Classification System (GMFCS-ER), and Gross Motor Function Classification-Metachromatic Leukodystrophy (GMFC-MLD) were selected through face validity. Subjects with a confirmed clinical and molecular diagnosis of TUBB4A-related leukodystrophy were enrolled. Participants' sex, age, genotype, and age at disease onset were collected, together with GMFM-88 and concurrent GMFCS-ER and GMFC-MLD. Performances on each measure were compared. GMFM-88 floor effect was defined as total score below 20%. A total of 35 subjects participated. Median performance by GMFM-88 was 16.24% (range 0-97.31), with 42.9% (n = 15) of individuals performing above the floor. GMFM-88 Dimension A (Lying and Rolling) was the best-performing dimension in the GMFM-88 (n = 29 above the floor). All levels of the Classification Scales were represented, with the exception of the GMFC-MLD level 0. Evaluation by GMFM-88 was strongly correlated with the Classification Scales (Spearman correlations: GMFCS-ER:GMFM-88 r = 0.90; GMFC-MLD:GMFM-88 r = 0.88; GMFCS-ER:GMFC-MLD: r = 0.92). Despite overall observation of a floor effect, the GMFM-88 is able to accurately capture the performance of individuals with attenuated phenotypes. GMFM-88 Dimension A shows no floor effect. GMFC-MLD shows a strong correlation with GMFCS-ER and GMFM-88, supporting its use as an age-independent functional score in TUBB4A-related leukodystrophy.


Assuntos
Paralisia Cerebral , Leucodistrofia Metacromática , Transtornos dos Movimentos , Humanos , Leucodistrofia Metacromática/complicações , Transtornos dos Movimentos/complicações , Reprodutibilidade dos Testes , Índice de Gravidade de Doença , Destreza Motora , Tubulina (Proteína)/genética
14.
Curr Probl Pediatr Adolesc Health Care ; 52(12): 101313, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36470809

RESUMO

Pediatric leukodystrophies are rare neurodegenerative diseases involving multiple systems. Each form has unique neurologic features but are characterized by encephalopathy with accompanying impairments evidenced in reflexes, muscle tone and movement control. Weakness of expiratory, inspiratory, and upper airway muscles may lead to impaired airway secretion clearance resulting in recurrent respiratory infections, dysphagia, sleep-disordered breathing, restrictive lung disease, and ultimately chronic respiratory insufficiency.


Assuntos
Síndromes da Apneia do Sono , Humanos , Criança
15.
Mol Genet Metab ; 137(4): 320-327, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36334423

RESUMO

Aicardi Goutières Syndrome (AGS) is an autoinflammatory disorder resulting in sustained interferon activation through defects in nucleic acid modification and sensing pathways. Thus, mRNA-based vaccination used against SARS-CoV-2, raise disease-specific safety concerns. To assess interferon signaling, we tested mRNA SARS-CoV-2 vaccines in AGS whole blood samples. Interferon activation is measured through quantitation of interferon signaling gene (ISG) expression and is increased in AGS patients. There was no increase in ISG scores from baseline following treatment with the nucleoside modified mRNA formulation compared to an increase with unmodified. A patient-family survey reported that the vaccines were well tolerated. These findings suggest that COVID vaccination using nucleoside-modified forms of mRNA vaccines are unlikely to directly stimulate ISG expression in response to mRNA internalization in AGS tissues. With continued community spread, we recommend vaccination using nucleoside-modified mRNA vaccines in this rare disease group in individuals for whom vaccines were previously well tolerated.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Vacinas contra COVID-19/genética , Nucleosídeos , COVID-19/prevenção & controle , RNA Mensageiro/genética , Interferons
16.
Continuum (Minneap Minn) ; 28(4): 1194-1216, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35938662

RESUMO

PURPOSE OF REVIEW: This article reviews the most common leukodystrophies and is focused on diagnosis, clinical features, and emerging therapeutic options. RECENT FINDINGS: In the past decade, the recognition of leukodystrophies has exponentially increased, and now this class includes more than 30 distinct disorders. Classically recognized as progressive and fatal disorders affecting young children, it is now understood that leukodystrophies are associated with an increasing spectrum of neurologic trajectories and can affect all ages. Next-generation sequencing and newborn screening allow the opportunity for the recognition of presymptomatic and atypical cases. These new testing opportunities, in combination with growing numbers of natural history studies and clinical consensus guidelines, have helped improve diagnosis and clinical care. Additionally, a more granular understanding of disease outcomes informs clinical trial design and has led to several recent therapeutic advances. This review summarizes the current understanding of the clinical manifestations of disease and treatment options for the most common leukodystrophies. SUMMARY: As early testing becomes more readily available through next-generation sequencing and newborn screening, neurologists will better understand the true incidence of the leukodystrophies and be able to diagnose children within the therapeutic window. As targeted therapies are developed, it becomes increasingly imperative that this broad spectrum of disorders is recognized and diagnosed. This work summarizes key advances in the leukodystrophy field.


Assuntos
Doenças Desmielinizantes , Transtornos do Metabolismo dos Lipídeos , Doenças Neurodegenerativas , Criança , Pré-Escolar , Humanos , Incidência , Recém-Nascido , Neurologistas
17.
Mol Genet Metab ; 136(4): 324-329, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35786528

RESUMO

BACKGROUND: Because of the broad clinical spectrum, heritable autoinflammatory diseases present a management and therapeutic challenge. The most common genetic interferonopathy, Aicardi Goutières Syndrome (AGS), is associated with early onset neurologic disability and systemic inflammation. The chronic inflammation of AGS is the result of dysregulation of interferon (IFN) expression by one of nine genes within converging pathways. While each AGS subtype shares common features, distinct patterns of severity and potential for systemic complications amongst the genotypes are emerging. Multilineage cytopenias are a potentially serious, but poorly understood, complication of AGS. As immunomodulatory treatment options are developed, it is important to characterize the role of the disease versus treatment in hematologic abnormalities. This will allow for better understanding and management of cytopenia. METHODS: In total, 142 individuals with molecularly-confirmed AGS were included. Information on genotype, demographics, and all available hematologic laboratory values were collected from existing medical records. As part of a clinical trial, a subset of this cohort (n = 52) were treated with a janus kinase inhibitor (baricitinib), and both pre- and post-treatment values were included. Abnormal values were graded based on Common Terminology Criteria for Adverse Events (CTCAE v5.0), supplemented with grading definitions for thrombocytosis, and were compared across genotypes and baricitinib exposure. RESULTS: In total, 11,184 laboratory values were collected over a median of 2.54 years per subject (range 0-22.68 years). To reduce bias from repeated sampling within a limited timeframe, laboratory results were restricted to the most abnormal value within a month (n = 8485). The most common abnormalities were anemia (noted in 24% of subjects prior to baricitinib exposure), thrombocytopenia (9%), and neutropenia (30%). Neutropenia was most common in the SAMHD1 cohort and increased with baricitinib exposure (38/69 measurements on baricitinib versus 14/121 while not on baricitinib). Having an abnormality prior to treatment was associated with having an abnormality on treatment for neutropenia and thrombocytopenia. CONCLUSION: By collecting available laboratory data throughout the lifespan, we were able to identify novel patterns of hematologic abnormalities in AGS. We found that AGS results in multilineage cytopenias not limited to the neonatal period. Neutropenia, anemia, and thrombocytopenia were common. Moderate-severe graded events of neutropenia, anemia, and leukopenia were more common on baricitinib, but rarely of clinical consequence. Based on these results, we would recommend careful monitoring of hematologic parameters of children affected by AGS throughout the lifespan, especially while on therapy, and consideration of AGS as a potential differential diagnosis in children with neurologic impairment of unclear etiology with hematologic abnormalities. Trial registration ClinicalTrials.gov Identifier: NCT01724580 ClinicalTrials.gov Identifier: NCT03921554.


Assuntos
Anemia , Neutropenia , Trombocitopenia , Doenças Autoimunes do Sistema Nervoso , Criança , Humanos , Recém-Nascido , Inflamação , Malformações do Sistema Nervoso
18.
Mol Genet Metab ; 137(1-2): 26-32, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35878504

RESUMO

BACKGROUND: Beta-propeller protein-associated neurodegeneration (BPAN) is a rare neurodegenerative disorder characterized by iron accumulation in the brain with spectrum of neurodevelopmental and movement phenotypes. In anticipation of future clinical trials and to inform clinical care, there is an unmet need to capture the phenotypic diversity of this rare disorder and better define disease subtypes. METHODS: A total of 27 individuals with BPAN were included in our natural history study, from which traditional outcome measures were obtained in 18 subjects. Demographic and diagnostic information, along with acquisition of basic developmental skills and overall neurologic severity were extracted from the medical records. Functional outcome measures were administered at the time of the evaluation or applied retrospectively at the last clinical encounter for patients who were not able to travel for in person. Based on age and functional level, the following assessments were administered: Leiter-3, Gross Motor Function Measure (GMFM)-66 Item Sets, Vineland-3, and Peabody-2. RESULTS: Overall, cognitive function was more impaired compared to gross motor function. Onset of symptoms of BPAN within the first 6 months of life was associated with decreased gain of ambulation and gain of spoken language (ambulation: log-rank test p = 0.0015; gain of first word: p = 0.0015). There was no difference in age at seizure onset by age at initial symptom onset (p = 0.8823). Collection of prospective outcome measures was limited by attention and behavior in our patient population, reinforcing the complexity of phenotype assessment and inadequacy of available standardized tests. Overall, gross motor and adaptive behavior assessments were better able to capture the dynamic range of function across the BPAN population than the fine motor and non-verbal cognitive tests. Floor effects were noted across outcome measures in a subset of individuals for cognitive and adaptive behavior tests. CONCLUSION: Our data suggest the distinct phenotypes of BPAN: a severe, early onset form and an attenuated form with higher cognitive capabilities. Early age at onset was a key factor in predicting future neurologic impairment.


Assuntos
Distúrbios do Metabolismo do Ferro , Humanos , Distúrbios do Metabolismo do Ferro/diagnóstico , Distúrbios do Metabolismo do Ferro/genética , Psicometria , Estudos Prospectivos , Estudos Retrospectivos , Proteínas de Transporte/genética , Ferro/metabolismo , Avaliação de Resultados em Cuidados de Saúde
19.
Int J Neonatal Screen ; 8(2)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35466195

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is the most common peroxisomal disorder. It results from pathogenic variants in ABCD1, which encodes the peroxisomal very-long-chain fatty acid transporter, causing a spectrum of neurodegenerative phenotypes. The childhood cerebral form of the disease is particularly devastating. Early diagnosis and intervention improve outcomes. Because newborn screening facilitates identification of at-risk individuals during their asymptomatic period, X-ALD was added to the Pennsylvania newborn screening program in 2017. We analyzed outcomes from the first four years of X-ALD newborn screening, which employed a two-tier approach and reflexive ABCD1 sequencing. There were 51 positive screens with elevated C26:0-lysophosphatidylcholine on second-tier screening. ABCD1 sequencing identified 21 hemizygous males and 24 heterozygous females, and clinical follow up identified four patients with peroxisomal biogenesis disorders. There were two false-positive cases and one false-negative case. Three unscreened individuals, two of whom were symptomatic, were diagnosed following their young siblings' newborn screening results. Combined with experiences from six other states, this suggests a U.S. incidence of roughly 1 in 10,500, higher than had been previously reported. Many of these infants lack a known family history of X-ALD. Together, these data highlight both the achievements and challenges of newborn screening for X-ALD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA